sexta-feira, 19 de junho de 2009

Como são fabricados os processadores

ct

Como são fabricados os processadores


O componente básico para qualquer chip é o wafer de silício que é obtido através da fusão do silício junto com os materiais que permitirão sua dopagem posteriormente. O silício é um dos materiais mais abundantes da natureza, o grande problema é que os wafers de silício precisam ser compostos de silício 99,9999% puro, o que demanda um caro e complicado processo de purificação. Qualquer impureza que passe despercebida nessa fase acabará resultando em um chip defeituoso mais adiante.

Inicialmente são produzidos cilindros, com de 20 a 30 centímetros de diâmetro, que são posteriormente cortados em fatias bastante finas:

Essas "fatias" são polidas e tratadas, obtendo os wafers de silício. A qualidade do wafer determinará o tipo de chip que poderá ser construído com base nele.

Wafers de baixa qualidade, usados para construir circuitos rudimentares, com poucos milhares de transístores, podem ser comprados a preços bastante baixos, a partir de milhares de fornecedores diferentes. Entretanto, para produzir um processador moderno, é preciso utilizar wafers de altíssima qualidade, que são extremamente caros.

Embora o silício seja um material extremamente barato e abundante, toda a tecnologia necessária para produzir os wafers faz com que eles estejam entre os produtos mais caros produzidos pelo homem. Cada wafer de 30 centímetros custa mais de 20 mil dólares para um fabricante como a Intel, mesmo quando comprados em grande quantidade.

Cada wafer é usado para produzir vários processadores, que no final da produção são separados e encapsulados individualmente. Não seria possível mostrar todos os processos usados na fabricação de um processador, mas para lhe dar uma boa idéia de como eles são produzidos, vou mostrar passo a passo a construção de um único transístor. Imagine que um Core 2 Duo possui 291 milhões de transístores e cada wafer permite produzir algumas centenas de processadores.

Tudo começa com o wafer de silício em seu estado original:

A primeira etapa do processo é oxidar a parte superior do wafer, transformando-a em dióxido de silício. Isso é feito através da exposição do wafer a gases corrosivos e a altas temperaturas. A fina camada de dióxido de silício que se forma é que será usada como base para a construção do transístor:

Em seguida é aplicada uma camada bastante fina de um material fotossensível sobre a camada de dióxido de silício.

Usando uma máscara de litografia, é jogada luz ultravioleta apenas em algumas áreas da superfície. A máscara tem um padrão diferente para cada área do processador, de acordo com o desenho que se pretende obter:

A técnica usada aqui é chamada de litografia óptica. Existem diversas variações da tecnologia, como a EUVL (Extreme Ultra Violet Lithography), usada nos processadores atuais. Quanto mais avançada a técnica usada, menores são os transístores, permitindo o desenvolvimento de processadores mais complexos e rápidos.

A camada fotossensível é originalmente sólida, mas ao ser atingida pela luz ultravioleta transforma-se numa substância gelatinosa, que pode ser facilmente removida. Depois de remover as partes moles da camada fotossensível (através de um banho químico), temos algumas áreas do dióxido de silício expostas, e outras que continuam cobertas pelo que restou da camada:

O wafer passa por um novo banho químico (baseado em compostos diferentes), que remove as partes do dióxido de silício que não estão protegidas pela camada fotossensível. Apesar disso, o restante continua intacto:

Finalmente, é removida a parte que restou da camada fotossensível. Note que, como temos substâncias diferentes, é possível remover uma camada de cada vez, ora o dióxido de silício, ora a própria camada fotossensível. Com isto é possível "desenhar" as estruturas necessárias para formar os transístores:

Cada transístor é formado para várias camadas, dependendo do projeto do processador. Neste exemplo, temos um transístor simples, mas os processadores atuais utilizam um numero muito maior de camadas, mais de vinte em alguns casos, dependendo da densidade que o fabricante pretende alcançar.

Começa então a construção da segunda camada do transístor. Inicialmente o wafer passa novamente pelo processo de oxidação inicial, sendo coberto por uma nova camada (desta vez bem mais fina) de dióxido de silício. Note que apesar da nova camada de dióxido de silício, o desenho anterior é mantido.

Em seguida é aplicada uma camada de cristal de silício sobre a estrutura anterior. Sobre ela é aplicada uma nova camada de material fotossensível, que será usado na fase seguinte:

O waffer passa novamente pelo processo de litografia, desta vez utilizando uma máscara diferente. O processo de fabricação das diferentes camadas do processador baseia-se justamente na repetição deste processo básico, alternando o uso de diferentes máscaras de litografia e banhos químicos:

Novamente, a parte da camada fotossensível que foi exposta à luz é removida, deixando expostas partes das camadas de cristal de silício e dióxido de silício, que são removidas em seguida:

Como na etapa anterior, é removido o que restou da camada fotossensível. Terminamos a construção da segunda camada do transístor:

Chegamos a uma das principais etapas do processo de fabricação, que é a aplicação das impurezas, que transformarão partes do wafer de silício num material condutor. Essas impurezas também são chamadas de íons. Note que os íons aderem apenas à camada de silício que foi exposta no processo anterior e não às camadas de dióxido de silício ou à camada de cristal de silício:

É adicionada então uma terceira camada, composta por um tipo diferente de cristal de silício, e novamente é aplicada a camada fotossensível sobre todo o material:

O wafer passa novamente pelo processo de litografia, usando mais uma vez uma máscara diferente:

As partes do material fotossensível expostas à luz são removidas, expondo partes das camadas inferiores, que são removidas em seguida:

Temos agora pronta a terceira camada do transístor. Veja que a estrutura do transístor já está quase pronta, faltando apenas os filamentos condutores:

Uma finíssima camada de metal é aplicada sobre a estrutura anterior. Nos processadores atuais, que são produzidos através de uma técnica de produção de 0.065 micron, essa camada metálica tem o equivalente a apenas 3 átomos de espessura.

O processo de aplicação da camada fotossensível, de litografia e de remoção das camadas, é aplicado mais uma vez, com o objetivo de remover as partes indesejadas da camada de metal. Finalmente temos o transístor pronto.

Cada processador é constituído por vários milhões de transístores, divididos em diversos grupos de componentes, entre eles as unidades de execução (onde as instruções são realmente processadas) e os caches. Como todo processador atual processa várias instruções por ciclo, são incluídos diversos circuitos adicionais, que organizam e ordenam as instruções, de forma a aproveitar da melhor maneira possível os recursos disponíveis.

Como você viu, embora absurdamente mais avançado, o processo de fabricação dos processadores é muito similar ao processo de revelação de fotos, onde a imagem do negativo é impressa no papel fotográfico usando luz. O "negativo" neste caso são as retículas (as máscaras de litografia).

Embora nesse exemplo tenha mostrado a produção de um único transístor, na produção real são usadas máscaras contendo todos os componentes do processador. No final do processo, teríamos um processador inteiro pronto, em toda a sua complexidade, ao invés de um transístor solitário.

No começo (início da década de 70), os filmes usados para produzir as máscaras de litografia eram, literalmente, feitos a mão, usando rubylith, um filme plástico de duas camadas, que é ainda usado por artistas gráficos. O engenheiro cortava a camada superior usando um estilete, criando um desenho das trilhas e outros componentes que seriam posteriormente "impressos" no wafer de silício formando o chip. Eram usadas várias máscaras diferentes, que deveriam combinar-se com precisão absoluta. Esta é uma foto antiga, publicada no Intel Technology Journal, que mostra como o trabalho era delicado:

Existiram inclusive histórias engraçadas, como o Intel 3101, o primeiro chip de memória da Intel. A primeira versão acabou ficando com apenas 63 bits (ao invés de 64) devido a um erro em uma das máscaras de litografia ;).

As máscaras feitas no rubylith eram depois transferidas para um filme, através de um processo de redução, gerando as retículas usadas na produção. Devido à enorme precisão envolvida, são utilizados espectros de luz não-visível, utilizando comprimentos de onda incrivelmente curtos, geradas a partir de laser ou pulsos de de descarga.

Atualmente, o processo de produção das máscaras é completamente automatizado. O próprio desenvolvimento dos processadores mudou. Ao invés de projetar os circuitos manualmente, os engenheiros utilizam um HDL (hardware description language), como o VHDL ou o Verilog (os mais usadas atualmente), que são uma espécie de linguagem de programação para o desenvolvimento de processadores, onde o engenheiro "programa" as instruções que devem ser executadas e outras características do processador, e o HDL gera o projeto do chip.

Naturalmente, ainda é possível desenvolver processadores (ou otimizar componentes internos específicos) usando o processo manual (assim como é possível programar em assembly), mas o processo se torna muito mais lento e trabalhoso. É comum que os processadores passem por diversas revisões durante sua via útil, onde a equipe de desenvolvimento começa com um design produzido através de um HDL e depois trata de otimizá-lo sucessivamente, obtendo assim ganhos de performance e outras melhorias.

No final do processo, temos um grande arquivo, que é enviado para a fábrica, onde são produzidas as retículas e feitas as demais fases do processo. Uma vez terminado o projeto, os engenheiros precisam esperar várias semanas até que os primeiros chips funcionais sejam produzidos. Qualquer erro que chegue até a fase de produção geraria um prejuízo de vários milhões, por isso o projeto passa por inúmeras revisões.

As máquinas de produção (chamadas steppers) repetem a "impressão" várias vezes, até cobrir toda a área do wafer de silício. Em seguida o wafer é movido para a máquina com a máscara seguinte e assim continua, até que o processo esteja completo. Todo o processo é feito numa sala limpa, por engenheiros usando os trajes de astronauta que aparecem nos comerciais da Intel. Todo cuidado é pouco, já que cada wafer contém centenas de processadores, que juntos valem algumas dezenas de milhares de dólares. Temos aqui uma foto ilustrativa, cortesia da Intel:

Depois de pronto, o wafer é cortado, dando origem aos processadores individuais. Desses, muitos acabam sendo descartados, pois qualquer imperfeição na superfície do wafer, partícula de poeira, ou anomalia durante o processo de litografia acaba resultando numa área defeituosa. Como não é possível produzir um wafer de silício quadrado, temos também os processadores "incompletos", que ocupam as bordas do wafer e que também são descartados no final do processo.


Processo de corte do wafer de silício (imagem cortesia da Micron)

Você poderia perguntar o porquê de não utilizarem retículas maiores para imprimir todo o wafer de uma única vez, ao invés de ter que repetir o processo para cada processador individual. O problema aqui reside no foco, que é perfeito no centro e sensivelmente pior nas bordas.

Já é difícil desenvolver máquinas que consigam manter o foco na área do chip, o que dizer então de mantê-lo em toda o wafer, que é uma superfície muito maior. É por isso também que os processadores são sempre mais ou menos quadrados, já que o formato permite obter o melhor foco.

Cada processador é testado individualmente, através de um processo automático. O wafer é finalmente cortado e os processadores "bons" são finalmente encapsulados, ou seja, instalados dentro da estrutura que os protege e facilita o manuseio e a instalação:

Nem todo processador nasce igual. Pequenas diferenças no foco, pequenos desvios no posicionamento das máquinas ao "imprimir" cada camada e assim por diante, fazem com que alguns processadores sejam mais rápidos que outros e muitos simplesmente não funcionem ou apresentem defeitos diversos. Em geral, mesmo grandes fabricantes como a Intel e AMD mantêm uma única linha de produção para cada processador. Os processadores são testados individualmente e vendidos de acordo com a freqüência de operação em que são capazes de trabalhar.

Um Core Duo 6600 (2.4 GHz) não é diferente de um Core Duo 6800 (2.96 GHz), por exemplo. Ambos compartilham a mesma arquitetura e passaram pela mesma linha de produção (pode ser que os dois tenham até mesmo compartilhado o mesmo wafer! :). A única diferença é que o 6800 teve a "sorte" de sair mais perfeito e, graças a isso, ser capaz de operar a freqüências mais altas. Com o passar o tempo o índice de aproveitamento tende a melhorar, fazendo com que mais e mais processadores sejam capazes de operar nas freqüências mais altas, até que finalmente é introduzida uma nova técnica de fabricação, ou uma nova família de processadores, dando início a um novo ciclo.

O formato do encapsulamento varia de processador para processador. Geralmente temos um spreader, ou seja, uma proteção de metal sobre o die do processador, que fica entre ele e o cooler. Entretanto em muitos processadores, como os Athlons, Durons e Semprons antigos, é usado um encapsulamento mais simples, em que a parte central é a própria parte inferior do wafer de silício, exposta para melhorar a dissipação de calor. Nesses casos, é preciso redobrar os cuidados na hora de instalar e remover o cooler, pois qualquer dano ao núcleo será suficiente para inutilizar o processador:


Sempron soquete A, exemplo de processador sem o spreader metálico

Só a título de curiosidade: o Intel 4004 era produzido usando uma técnica de 10 micra, em que cada transístor media o equivalente a 1/100 de milímetro. Considerando que um fio de cabelo possui apenas 1/10 de milímetro de espessura, transístores de 10 micra (micra é o plural de micron) podem parecer pequenos, mas se comparados com os atuais, eles parecem pirâmides, de tão grandes. :)

O 486 já foi produzido numa técnica de 1 micron, onde cada transístor ocupa uma área 100 vezes menor. Enquanto o 4004 tinha apenas 2.000 transístores, o 486 tinha um milhão deles.

Como a velocidade de operação do transístor está diretamente relacionada a seu tamanho, o 486 é também brutalmente mais rápido. Enquanto o 4004 opera a 740 kHz, o 486 atingiu 100 MHz (nas versões fabricados pela Intel).

Mas isso não é nada se comparado aos processadores atuais. Um Core 2 Duo X6800 é fabricado numa técnica de 0.065 micron (237 vezes menores que os do 486!), possui 291 milhões de transístores e opera a 2.93 GHz.

Estão previstos processadores fabricados numa técnica de 0.045 micron em 2008 e 0.032 micron em 2010. Depois disso não se sabe até onde a tecnologia poderá evoluir, pois os fabricantes estão se aproximando dos limites da matéria. A 0.032 micron já temos transístores ocupando uma área equivalente a poucas centenas de átomos de silício.

Atualmente, muitos tem passado a utilizar o nanômetro como unidade de medida no lugar do micron, pois é mais fácil de pronunciar. Um nanômetro equivale a um milésimo de micron, de forma que em vez de dizer que o processador, x é fabricado numa técnica de 0.045 micron, você pode dizer que ele é fabricado numa técnica de 45 nanômetros.



Nenhum comentário:

Postar um comentário

FAÇA UMA DOAÇÃO PARA O NOSSO BLOG

MAKE A DONATION TO OUR BLOG/ HACER UNA DONACIÓN A NUESTRO BLOG/ FAI UNA DONAZIONE PER IL NOSTRO BLOG/ FAITES UN DON DE NOTRE BLOG/ Spenden AUF UNSERE BLOG/ บริจาคให้กับบล็อกของเรา/ 私達のブログに寄付する/

WATCHMEN – Trailer Oficial

TOP 100 GATAS


TABLE OF HOTNESS

100. Deanna Russo
99. Melissa Rycroft
98. Rebecca Mader
97. Marisa Tomei
96. Olivia Munn
95. Padma Lakshmi
94. Yvonne Strahovski
93. Michelle Obama
92. Joanna Krupa
91. Chelsea Handler
90. Roselyn Sanchez
89. Jamie Chung
88. Diane Kruger
87. Summer Glau
86. Ali Campoverdi
85. Michelle Trachtenberg
84. Minka Kelly
83. Whitney Port
82. Emma Watson
81. Heidi Montag
80. Jamie Gunns
79. Jaime King
78. Danica Patrick
77. Stacy Keibler
76. Cameron Richardson

75. Tricia Helfer
74. Amanda Bynes
73. Ashley Tisdale
72. Camilla Belle
71. Gabrielle Union
70. Maria Menounos
69. Jennifer Morrison
68. Ashley Greene
67. Emmy Rossum
66. Emma Stone
65. Amanda Righetti
64. Diora Baird
63. Milla Jovovich
62. Heidi Klum
61. Dania Ramirez
60. Carrie Underwood
59. Ana Ivanovic
58. Miranda Kerr
57. Audrina Patridge
56. Amber Heard
55. Christina Milian
54. Rachel Bilson
53. Kim Kardashian
52. Beyoncé
51. Sienna Miller

50. Taylor Swift
49. Freida Pinto
48. Arielle Kebbel
47. Katie Cassidy
46. Nicole Scherzinger
45. Fergie
44. Avril Lavigne
43. Elisha Cuthbert
42. Nikki Reed
41. Nadine Velazquez
40. Lily Allen
39. Anna Faris
38. Charlize Theron
37. Cameron Diaz
36. Hayden Panettiere
35. Anna Kournikova
34. Scarlett Johansson
33. Blake Lively
32. Ciara
31. Hilary Duff
30. Penélope Cruz
29. Zoe Saldana
28. Danneel Harris
27. Vanessa Hudgens
26. Angelina Jolie

25. Julianne Hough
24. Eva Mendes
23. Lindsay Lohan
22. Kate Beckinsale
21. AnnaLynne McCord
20. Moon Bloodgood
19. Chan Marshall
18. Marisa Miller
17. Britney Spears
16. Gina Carano
15. Katy Perry
14. Christina Aguilera
13. Jessica Alba
12. Leighton Meester
11. Jessica Biel

Click here to
see the top 10!


Gatas USA



2008
Jenna - Cuyahoga Falls, OH Shaun - Conroe, TX undefinedundefinedundefinedundefinedundefinedMegan - Parma, OH undefinedundefinedundefinedundefinedundefinedundefinedJacquelyn - Dayton, MD undefinedSarah - Baltimore, MD undefinedLucia - Burbank, CA undefinedEdnyr Marie - Orlando, FL undefinedundefinedChristina - Fresh Meadows, NY undefinedundefined
Debbie - Huntington Beach, CA
2007
2007